

SIAM Rev.Newton raphson method calculator 2 variablesImplementation of the Newton-Raphson algorithm in Python. Ypma, T.: Historical development of the Newton-Raphson method. Wang, X.H., Han, D.F.: On the dominating sequence method in the point estimates and Smale’s theorem.


Wang, X.H.: Convergence of Newton’s method and uniqueness of the solution of equations in Banach spaces. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Fields Institute Communications, vol. 3, pp. 113–146. Smith, S.: Optimization Techniques on Riemannian Manifolds. (eds.) The Merging of Disciplines: New Directions in Pure, Applied and Computational Mathematics. Smale, S.: Newton’s method estimates from data at one point. Shub, M., Smale, S.: Complexity of Bézout’s theorem IV: probability of success, extensions. Shub, M., Smale, S.: Complexity of Bézout’s theorem I: geometric aspects. (eds.) Proceedings of the Smalefest, pp. 443–455. In: Hirsch, M.V., Marsden, J.E., Shub, M. Shub, M.: Some remarks on Bézout’s theorem and complexity. Equinoccio, Universidad Simon Bolivar, Caracas (1986) (eds.) Dynamical Systems and Partial Differential Equations, Proceedings of VII ELAM. Shub, M.: Some remarks on dynamical systems and numerical analysis. Owren, B., Welfert, B.: The Newton iteration on Lie groups. Ostrowski, A.: Solutions of Equations in Euclidean and Banach Spaces. Ortega, J., Rheinboldt, V.: Numerical Solutions of Nonlinear Problems. Malajovich, G.: On generalized Newton’s methods. Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant alpha-theory. Li, C., Wang, J.H.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the r-condition. Travaux de l’Institut des Mathématiques Steklov XXVIII, 104–144 (1949) Kantorovich, L.: Sur la méthode de Newton. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Goldstine, H.: A History of Numerical Analysis from the 16th Through the 19th Century. 235, 1515–1522 (2011)įerreira, O.P., Svaiter, B.F.: Kantorovich’s theorem on Newton’s method on Riemannian manifolds. 29, 746–759 (2009)įerreira, O.P.: Local convergence of Newton’s method under majorant condition. La Gaceta de la RSME 13, 53–76 (2010)įerreira, O.P.: Local convergence of Newton’s method in Banach space from the viewpoint of the majorant principle. 20, 303–353 (1998)Įzquerro, J., Gutiérrez, J., Hernandez, M., Romero, N., Rubio, M.-J.: El metodo de Newton: de Newton a Kantorovich. Prentice Hall, Englewood Cliffs (1983)Įdelman, A., Arias, T., Smith, S.: The geometry of algorithms with orthogonality constraints. 23, 395–419 (2003)ĭennis, J., Schnabel, R.: Numerical Methods for Unconstrained Optimization and Nonlinear Equation. 69, 1099–1115 (2000)ĭedieu, J.-P., Priouret, P., Malajovich, G.: Newton’s method on Riemannian manifolds: covariant alpha theory. 69, 1071–1098 (2000)ĭedieu, J.-P., Shub, M.: Newton’s method for overdetermined systems of equations. Springer, Berlin/New York (2006)ĭedieu, J.-P., Kim, M.-H.: Newton’s Method for Analytic Systems of Equations with Constant Rank Derivatives. Springer, New York (1997)ĭedieu, J.-P.: Points Fixes, Zéros et la Méthode de Newton. 15, 243–252 (1966)īeyn, W.-J.: On smoothness and invariance properties of the Gauss-Newton method. 10, 555–563 (2005)īen-Israel, A.: A Newton-Raphson method for the solution of systems of equations. Springer, New York/London (2008)Īrgyros, I., Gutiérrez, J.: A unified approach for enlarging the radius of convergence for Newton’s method and applications. 8, 197–226 (2008)Īrgyros, I.: Convergence and Applications of Newton-Type Iterations. Springer, Berlin/New York (1990)Īlvarez, F., Bolte, J., Munier, J.: A unifying local convergence result for Newton’s method in Riemannian manifolds. 22, 1–32 (2002)Īllgower, E., Georg, K.: Numerical Continuation Methods. Princeton University Press, Princeton/Woodstock (2008)Īdler, R., Dedieu, J.-P., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds with an application to a human spine model. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds.
